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1 The Prediction of Bose-Einstein Condensation

Introduction

With the developement of quantum physics at the beginning of the 20th century a
different view on thermodynamics was prompted. While an ideal gas with infinitesimally
small and interaction-free particles was well understood, new properties like quantum
state or wavefunction and quantity of total spin had to be taken into account, the latter
classifying particles in either bosons or fermions. Boson with integer spin can multiply
occupy one state in a given quantum system, whereas it is forbidden for fermion with
half-integer to occupy the same state twice. For a Bose-gas obeying the Bose-Einstein
statistics it is therefore possible to condensate completely into one quantum state,
where particles behave identically. This is called a Bose-Einstein condensate, which
was postulated already in 1925. The experimental prove was, however, more difficult.
At high temperatures a boson gas behaves nearly like an ideal gas, because the mean
distance between particles is sufficiently large. Because of the Bose-Einstein-statistics,
it is nearly impossible that a macroscopically number of particles are in the same
quantum state at the same time. The only way to achieve this would be to gradually
remove energy of the system until all particles are forced into the lowest energy state.
This requires low temperature, which with the experimental techniques at that time
could not be attained. There were of course hints that Bose-Einstein condensation
exists with the discovery of superconductivity in 1911 and superfluidity in 1937 and
their subsequent microscopically explanations, which stated that particles condense in
one quantum state. But these theories involved interaction between atoms, which was
contrary to the prediction of Bose and Einstein, where non-interactive atoms condense.
The first true Bose-Einstein-condensation was yet to be shown. Finally, in 1995 a group
from of the University of Colorado at Boulder NIST-JILA successfully observed BEC in
87Rb, utilizing new technoligies in laser cooling and magnetic trapping. But the effort is
not diminished through this fulfilment, since many properties have to be examined and
condensates of different elements have to be produced. And of course BEC provides
the key for the development of the atom laser and its application, which is still in the
beginning.

1 The Prediction of Bose-Einstein Condensation

1.1 Ideal Fermion-and Boson-Gas

At high temperatures, e.g. room temperature, gases like 4He or 3He follow the
Maxwell-Boltzmann-Distribution. The average occupation of an energy state εi is
expressed by the formula:

n̄i = gie
− εi−µ

kT (1)
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1 The Prediction of Bose-Einstein Condensation

with:
gi degeneracy of state
µ chemical potential
k Boltzmann constant
T temperature
N total number of particles

This formula only applies for the case of dilute gases and high temperatures. This
means that the mean distance between particles is much greater than the de Broglie
wavelength, 3

√
V/N � λ. At lower temperatures this condition cannot be held any-

more because the De Broglie-wavelength increases with decreasing temperature as
λ ∼ 1√

T
. In other words, because of the fact that at lower temperatures high energy

states are frozen out, it gets more and more improbable for particles to occupy high
energy states according to (1). At this point we have to take quantum effects like
the Pauli exclusion principle into account which considers the fact that identical par-
ticles are indistinguishable. It postulates that particles with half-integer spin, called
fermions, cannot occupy the same quantum state simultaneously, whereas integer spin
particles, called bosons, can. This proposition leads to the application of antisymmet-
ric or symmetric many particle wavefunctions when dealing with quantum gases which
contain either fermions or bosons. In general, such wavefunctions can be described in
the following way when neglecting interaction between particles.

Antisymmetric and symmetric wavefunctions must behave antisymmtrically and sym-
metrically under transposition of coordinates, respectively:

PijψA = −ψA, for fermions (2)
PijψS = ψS, for bosons (3)

A system with N particles can be described by its configuration, where ν1, ν2, ... are
one-particle-states, derived from the Schroedinger equation for one particle.

c = {ν1, ν2, ν3, ..., νn} (4)

The normal multiplicated wavefunction Ψc = Φν1(x1)Φν2(x2)...ΦνN (xN) would not
satisfy (3), so it has to be modified. Especially for the antisymmetric case the Slater-
Determinate is used to fulfil the demand of the Pauli-Principle. Thus, if two states in
the configuration are equal, then two rows in the Slater-determinant are identical and
the value collapses to zero which implies a forbidden state of the system.
Here the many particle wavefunction:

ΨA
c =

1√
N !

∣∣∣∣∣∣∣∣
Φν1(x1) Φν1(x2) · · · Φν1(xN)
Φν2(x1) Φν2(x2) · · · Φν2(xN)
· · · · · · · · · · · ·

ΦνN (x1) ΦνN (x2) · · · ΦνN (xN)

∣∣∣∣∣∣∣∣ (5)
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1 The Prediction of Bose-Einstein Condensation

ΨS
c =

1√
N !

1√
n1!n2!...nN !

∑
P∈SN

TP{(Φν1(x1)Φν2(x2)...ΦνN (xN)} (6)

In the symmetric wavefunction the sum goes over all possible permutations of coordi-
nates. Multiple occupation is possible.

1.2 Thermodynamics of fermions and bosons

The microstate α of a system of bosons and fermions is described in the same way as
above.

α = {nα0 , nα1 , · · · }

Where nαi is the occupation number of a one-particle state i. Since the partition
function Z is the starting point for any thermodynamic considerations, it should be
calculated at first. This is possible only through assuming that the system is a grand
canonical ensemble.

Z(T, V, µ) =
∑
α

eβ(µNα−Eα) and : (7)

Nα =
∑
i

ni (8)

Eα =
∑
i

εini (9)

Therefore:

Z =
∑
α

eβ
∑
i ni(µ−εi) =

∏
i

∑
ni

eβ(µ−εi)ni (10)

In the last term the summation over the occupation number ni can be performed until
infinity because the total particle number is not restricted. Considering only one factor
of the above product, one can get:

ZF
i = 1 + eβ(µ−εi), because for fermions : nk = 0, 1

ZB
i =

1

1− eβ(µ−εi)
, because for bosons : nk = 0, · · · ,∞

The total partition sum Z is related to the grand potential Ω in the following way:

ΩF (T, V, µ) = −kT lnZF = −kT
∑
i

ln (1 + eβ(µ−εi)) (11)

ΩB(T, V, µ) = −kT lnZB = kT
∑
i

ln (1− eβ(µ−εi))
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1 The Prediction of Bose-Einstein Condensation

With the useful formula (12) one can derive the expressions for Fermi-Dirac and
BoseEinstein-distribution which are very important in discussing quantum gases.

n̄i =
1

β

∂

∂εi
lnZ (12)

〈
nFi
〉

=
1

eβ(εi−µ) + 1
, Fermi−Dirac (13)〈

nBi
〉

=
1

eβ(εi−µ) − 1
, Maxwell− Boltzmann

The average occupation number for fermion fulfils 0 <
〈
nFi
〉
< 1 which is evident

from the equations above. The case for bosons is more interesting. Averting the
unphysical solution with occupation numbers

〈
nBi
〉
< 0 for all energy levels, especially

the lowest level ε0, leads to the constraint µ < ε0. But this does not forbid an
evolution, where µ → ε0. In this case the occupation number of the lowest energy
state attains macroscopic dimensions; Bose-Einstein condensation is obtained.

1.3 Quantitative description of BEC

To compute the total number of Bose-particles, we make use of the plausible relation:

N(T, V, µ) =
∑
i

n̄i (14)

For simplicity the particles can be described as plane waves in a box of volume V .

φp =
1√
V
eip·r/~ (15)

with : p = 2π~n/L, n = (nx, ny, nz)

Consequently, the states are densely packed in p-space. One state takes up the volume
∆p = ~3 (2π)

3

V
. If the volume is large enough, the distribution of states in p-space

can be treated as being continuous. In that way a summation over all possible energy
levels can be converted into an integration

∑
p → V/(2π~)3

∫
d3p. Since in (13) only

the energy value appears, it is practicable to perform the integration over the energy.
The ground level in this consideration is found at zero point (ε0 = 0). Making use
of the dispersion relation ε = p2

2m
which applies to all massive particles, we can finally
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1 The Prediction of Bose-Einstein Condensation

compute the particle number with the help of (13, 14).

dε =
dε

dp
· dp =

√
2ε

m
dp

V/(2π~)3
∫
d3p −→ 4π

V

h3

∫
p2 · dp −→ 4πV

h3

√
2m3/2

∫ ∞
0

√
εdε

therefore : N =
V

λ3T
· 2√

π

∫ ∞
0

dx
√
x

1

z−1ex − 1

with : λT =

√
2π~2
mkBT

, thermal wavelength

z =eβµ, is called fugacity

Γ(p) =

∫ ∞
0

xp−1e−xdx, factorial function (16)

The integral in (16) corresponds to function g3/2(z) which belongs to a special class
of functions, called Bose functions.

gp(z) =
1

Γ(p)

∫ ∞
0

dxxp−1
1

z−1ex − 1
=
∞∑
l=1

zl

lp

thus : NT =
V

λ3T
g3/2(e

βµ) (17)

This function depends only on the chemical potential µ through the fugacity z. In
the above derivation for the particle number N the behaviour of the ground level ε
was neglected. In the transition to a continuous sum, the contribution of this level
to the total sum is infinitesimally small. This is correct for small occupation numbers
at high temperatures, but incorrect in the case of macroscopic condensation into this
state. Therefore, we have to write the particle number as a sum of ground state N0

and excited state occupation NT . The latter was derived above.

N = N0 +NT (18)

The occupation of the ε0 depends on µ as well. Assume that the state has Ncond

particles. Making use of formula (13) and substituting
〈
nB0
〉

= Ncond one can estimate:

µ ≈ −kT
Ncond

(19)

Hereby, it is shown that the chemical potential follows the µ → ε0 = 0 development.
The exact value of µ is defined by equation (18). With the knowledge of (18,16) we
can finally plot the function N0(µ), NT (µ).
While N0 diverges at µ = ε0, NT reaches its maximum Nc at this point, with

Nc ∼ T 3/2g3/2(1), (ε0 = 0). Thus, the non-consideration of the ground state and
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1 The Prediction of Bose-Einstein Condensation

Figure 1: Variation of µ at fixed temperature

its occupation is only possible as long as Nc > N . Below a critical temperature Tc
the condition, that almost all particles are excited, can not be held anymore, and
Bose-Einstein-condensation inevitably takes place. With formula (17) we obtain Tc by
setting µ = 0 and evaluating the integral.

Tc =
h2

2πmk
(

n

2.612
)2/3, n =

N

V
(20)

Since in the case of T < Tc, µ = 0 is valid throughout the range, the number of
excited particles can be written in simplified form, still in accordance to (17). N0

follows instantly from the normalization condition.

NT =

(
T

Tc

)3/2

·N (21)

N0 = N

[
1−

(
T

Tc

)3/2
]

These formulae were deduced under the assumption, that above Tc the number of
particles in the ground state can be neglected. In the same way like done with N , an
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2 Experimental Realization of BEC

expression for inner energy E can be obtained.

E =
∑
i

εi
eβ(εi−µ) − 1

(22)

→ E =
3

2
· kBT

V

λ3T

4

3
√
π

∫ ∞
0

x3/2
1

z−1ex − 1

=
3

2
· kBT

V

λ3T
g5/2(z), for T > Tc

E =
3

2
kBT

V

λ3T
g5/2(1), for T ≤ Tc, g5/2(1) = 1.342

According to equation (20) the critical temperature only depends on the particle density
and the mass. Taking for example gaseous 4He at its boiling point, the result is
Tc = 0.5 K. Far in the range of liquid 4He. The same calculation, this time with
the mass density of 0.14 g/cm3, yields Tc = 3.1 K, which is in the vicinity of the
2.17 K, the λ-point. This coincidence has lead to assumption, that the phenomenon
of superfluidity of liquid 4He is in fact a Bose-Einstein-condensation.
For describing a mixed system of condensed and excited particles quantum mechanically
one might use the particle density matrix defined by

n(1)(r, r′) = N0ϕ
∗
0(r)ϕ0(r

′) +
∑
i 6=0

niϕ
∗
i (r)ϕi(r

′) (23)

, where ϕi(r) are the single particle wave functions and ni the occupation numbers.
Inserting the plane wave ansatz ϕpi(r) = 1√

V
eipi·r/~ and computing the Fourier trans-

form one can derive the distribution of momentum:

n(p) = N0δ(p) +
∑
pi 6=0

npiδ(p− pi) (24)

The distribution exhibits a significant peak at p = 0 which later was used to observe
and prove the Bose Einstein condensation.

2 Experimental Realization of BEC

The first actual observation of Bose-Einstein-condensation was achieved by Eric Cor-
nell and Carl Wieman in 1995 at the University of Colorado at Boulder NIST-JILA.
They were able to cool Rubidium (87Rb) down to 170 nK and to finally observe the
condensation [1]. The low transition temperature results from the very low particle
density of this gas with n = 2.5 · 1012 cm−3 in order to inhibit particle interaction.
In this way, a BEC can be induced in a system whose parameters follow the idealized
theory and its prediction. In this chapter the way and techniques of producing such
low temperatures and the eventual observation will be outlined.
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2 Experimental Realization of BEC

2.1 Laser-Cooling

The most convenient and practical way of cooling would be the use of liquid helium,
which has a boiling point of 4.2 K. But even with reduction of vapour pressure tem-
peratures with minimum around 1 K can be reached [2], far too high for BEC in matter
with the specifications above. Therefore, scientists had to find a new way of cooling
matter. In 1975 a cooling mechanism utilizing the monochromatic laser radiation was
proposed by Wineland, Dehmelt, Theodor W. Hänsch and Arthur Leonard Schawlow.
In principle, this technique makes use of the fact that temperature is related to the
average kinetic energy of the atoms in the system. The root mean square velocity can
be calculated with vrms =

√
3kBT
m

. Laser light decelerates the atoms when scattered
because the momentum of photons is transferred. This process can only take place
when the atom is moving in the opposite direction of the photon. Assuming the atom
has a electric dipole transition at frequency ν0, the laser frequency ν is tuned slightly
below that value. Moving towards the photon, atoms with certain velocity "see" it at
ν0 and the probability for scattering is much higher than for atoms moving away from
the light source. They are effectively transparent for light. Change of velocity for one
scattering event can be easily calculated:

∆~v =
~~k
M

(25)

~k wavevector of photon
M mass of atom

Figure 2: Experimental setup for laser cooling [3]

The absorption frequency can be derived taking into account the Doppler-effect and
the energy and momentum conservation, resulting in a recoil term R = (~k)2

2M
. After
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2 Experimental Realization of BEC

that, the atom is an excited state, where it reemits a photon. Its direction is random,
so the occurring recoil cancels out when averaging over many scattering processes.
The formulae for absorption and emission yield [4]:

ωabs = ω0 + ~kabs~v −
1

2
ω0β

2 +
R

~
, β =

|~v|
c

(26)

ωem = ω0 + ~kem~v
′ − 1

2
ω0β

2 − R

~

ωabs, ωem frequencies of absorbed and emitted photon
~v′ velocity of excited atom

Here, the formula for frequency shift due to Doppler-effect was expanded.

ω′ = ω

√
1− β2

1− β

Setting the ~kem zero as explained above, we obtain for the average loss of kinetic
energy per atom and per event:

∆ = ωabs − ωem = ~~k~v + 2R (27)
(28)

From (?? we see the detuning of the laser frequency ωabs from the resonance frequency
ω0, which is necessary for an optimal absorption and hence deceleration of atoms. As
we see in the diagram (3), the peak of the spectral intensity distribution of the laser
has to be shifted away from the maximum of the Lorentz-shaped absorption spectrum
of the atom by ωabs − ω0, resulting in resonance in the rest frame of the atom only
when its moving towards the laser.
Since ~~k~v < 0, the modulus of this value has to be larger than 2R for reducing the
kinetic energy of the atom according to (27).
Taking, for example, a sample of atoms at 300 K with mass 100 amu and a resonance

frequency µ0 = 5 · 1014 Hz (which corresponds to λ = 600 nm leads to vrms =
2.2 · 104 cm/s and eventually to ∆Ekin = 3

2
kB∆T with ∆T = 0.012 K. This implies

that more than 10.000 scattering events with a photon are necessary for each atom to
decrease the global temperature close to 0 K.
The probability of scattering related to the cross section is given for this process by:

σ(ω) = σ0
(1
2
γ)2

(ω − ω0)2 + (1
2
γ)2

(29)

σ0 is cross section at resonance frequency ω0. The damping factor γ is related to
the finite lifetime in the excited state and so to the quantity for the natural linewidth.
With the change in momentum in every scattering event a frictional force is imposed
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2 Experimental Realization of BEC

Figure 3: Laser and absorption spectrum of atom, Doppler-shifted lines

(a) (b)

Figure 4: a) Energy-level-diagram for alkalilike-atom, b) Scattering process of laser
photon which results in a momentum loss of the scattering atom, [4]
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2 Experimental Realization of BEC

on the atoms:

Fx = −~k ×R(I,∆)

where R(I,∆) is the net absorption rate, depending on the intensity and the detuning.

R(I,∆) =
γ

2

(
I/Is

1 + I/Is + [2(∆ + kvx)/γ]2

)
, Is : saturation intensity (30)

The maximum is reached, when ∆ = −kvx, i.e. the Doppler-shift in linear approxima-
tion leads to resonance with the atomic transition. Since the atoms moving in opposite
direction (v− < 0) have to be decelerated as well, another laser directing inversely is
applied. This means a total force Fx = F+ + F−. The index indicates the direction
of laser light (±x). At high temperatures, that means k|vx| � γ, it holds F− � F+.
At low temperatures, which means |kvx| � ∆ and |kvx| � γ, the relation takes the
simple form [5]:

Fx = −αvx (31)

α = −8~k2∆
γ

(
I/Is

[1 + I/Is + (2∆/γ)2]2

)
With ∆ < 0, α > 0 is a damping factor, which leads to a effective cooling rate of:(

dE

dt

)
cool

= Fxvx = −αv2x (32)

Until now we have not taken the heating of the sample into account. An atom with
zero mean velocity does not correspond to zero temperature, since the average of the
squared velocity is unequal zero. In fact, the particle is performing a Random Walk,
where the mean momentum depends on the number N of interaction events with the
2 laser beams [5]. 〈

p2x
〉

= 2N(~k)2 (33)
N = 2Rt

d 〈p2x〉
dt

= 4~2k2R(
dE

dt

)
heat

=
1

2m

d 〈p2x〉
dt

=
2~2k2R
m

From these equations it is evident that a high intensity of light and an associated high
frequency of scattering events result in a larger value for momentum and therefore
heating of the medium. An equilibrium between cooling and heating process is reached
when

(
dE
dt

)
heat

=
(
dE
dt

)
cool

. By means of this condition, one can derive the possible
minimum temperature, the so called Doppler limit, assuming again |kvx| � |∆| and
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2 Experimental Realization of BEC

low intensities I � Is.

−αv2x +
2~2k2R
m

= 0 (34)

1

2
kBT =

1

2
mv2x

⇒ Tmin = − ~γ
8kB

(1 + I/Is + 4∆2/γ2)

∆/γ

≈ ~γ
2kB

Therefore, typical values of the Doppler limit lie in the µT-range, since τ = 1
γ
usually

takes values of several ns. The above derivations was performed only for the 1-D-case
(x-direction), which is obvious considering the energy-temperature relation in (34).
In fact, lower temperatures are possible considering the spatial variation due to interfer-
ence of the counter-propagating laser beams. The two Zeeman-sublevels MJ = ±1/2
of the ground state 2S1/2 are splitted and the harmonic modulation of their potential
energy due to the laser field is 180◦ phase shifted. A moving atom, which occupies
one of these states, follows the modulated potential and converts potential energy
in kinetic energy and vise versa. The laser frequency is tuned in that way that the
atom can only absorb light when its on top of the hill making a transition into the
state 2P3/2. From there instant transition back into both Zeeman-levels is possible,
whereas a change between these levels means an additional energy which the atom has
to deduct from its kinetic energy. The minimum temperature according to this process
is roughly given by the recoil of the emitting photon, which can be derived from the
momentum conservation.

1

2
kBTmin =

p2

2m
=

h2

2mλ2

Tmin =
h2

mkBλ2
(35)

This technique eventually enables temperatures down to 2µK.

2.2 Magnetic trapping

The gas may be cooled down with the previous steps, but still the transition tem-
perature depends on the volume density of atoms according to formula (20). This
means that the sample has to be locally confined. The most convenient way in order
to prevent interaction with the environment and and the enclosure is magnetic trap-
ping, which makes use of a non-zero magnetic moment of the electric neutral atoms.
The simplest structure of those atoms are alkali atoms like Rubidium, where a valence
electron occupies the s-orbital (l = 0). The other electrons lie in closed shells, so that
their total spin and angular momentum cancel out. Since the number of electrons and
protons in an alkali atom is odd, the number of neutrons has to be even in order to
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2 Experimental Realization of BEC

Figure 5: Sisyphus effect [6]

obtain a boson. But this means a non-zero nuclear spin I which interacts with the
valence electron. For the case of Rubidium the spin bzw. angular momenta have the
values S = 1

2
, L = 0 −→ J = 1

2
and nuclear spin has I = 3

2
. They add up to the

total angular momentum after the rule of addition of angular momenta:

F = I + J , J = L+ S (36)
F = I + J, I + J − 1, · · · , |I − J |

→ F = I ± 1/2, F = 1 or F = 2

Hyperfine interactions between nuclear spin I and electron spin J are satisfied by the
term Hhf = AI ·J . The energy difference between the two hyperfine levels according
to (36) yields ∆Ehf = A(I + 1

2
). For describing magnetic trapping, the Zeeman-term

in the Hamiltonian is crucial.

magnetic moment : µ = −µBgJ
= µB(glL+ gsS)

pertubation term : VM = −µB
With a magnetic field B = Bez applied, the perturbation term adopts the following

form for alkali atoms:

VM = 2µBJzB (37)

The Hamilton operator therefore becomes:

H = AI · J + 2µBJzB (38)

The weak interaction of the nuclear moment with the magentic field was neglected
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2 Experimental Realization of BEC

here. The deviation of the energy for the states |F,mF 〉 is given by the matrix element:

〈F,mF |2µBJzB|F,mF 〉 = gLµBmFB (39)

gL =
(F (F + 1) + J(J + 1)− I(I + 1))

2F (F + 1)

But these are not the eigenstates of the Hamilton-Operator (38), but the states
|mI ,mJ = ±1/2〉. Diagonalization of the Hamilton matrix yields eventually the cor-
responding energy values. For instance, states mF = ±2 are given by | ± 3/2,±1/2〉
and the energies are:

Em=+2 =
3

4
A+ µBB (40)

EmF=−2 =
3

4
A− µBB

At high magnetic fields C � A, these levels simply become E = ±µBB. This gives a
quantity of energy due to the magnetic field, but it does not say for which states these
values apply. With respect to (39) one can classify the states into high-field-seeking
and low-field-seeking-states. For example, for F = 2 the Lande factor is positive and
therefore mF = 1, 2 is low-field-seeking. The same applies for F = 1,mF = −1
because the Lande factor is negative in this case. Particularly, in the experiments done
by Cornell and Wieman they used a short pulse of circularly polarized laser light to
pump all atoms and align their moment to a small magnetic bias. in this way they set
F = 2,mF = 2 [1].

2.2.1 Applied magnetic field and evaporative cooling

The apparatus the research group was using (see figure 6) comprised first of all a glass
cell with a square base with side length of 2.5 cm and length 12.0 cm, which contained
the diluted vapor provided by a chamber at T = 300 K with pressure of 10−11 torr.
After the laser cooling process described above, a TOP (time orbiting potential)-trap is
switched on. Here, two larger coils in anti-Helmholtz configuration create the principal
magnetic field B which forms the potential bowl for trapping and controlling the gas.

B = B′(x, y,−2z) (41)

Only this quantitative formulation of the field implies, that the interaction with mag-
netic moments of the atoms will not be as straightforward to describe as formula (39)
might suggest. To avert this problem, one assumes adiabatic approximation where an
atom remains in the same quantum state relative to the momentary direction of the
field. As seen in (41), the field vanishes at the centre, so that the low field seeking
atoms are gradually driven into the potential minimum. This condition will not hold
once they reach the region where the magnetic field vanishes. There, it is possible
that the motion of the atom deviates from the direction of the field causing spin-state
transitions. A low-field-seeking state suddenly becomes a high field seeking state and
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2 Experimental Realization of BEC

the atom is lost, since it will be repelled by the magnetic trap. To overcome this
problem, the experimental set up was added with 4 smaller coils perpendicular to the
Helmholtz coils. Each one placed in one of the four remaining directions, so that the
coil configuration looked like a cuboid. They imposed a small transverse rotating field
of amplitude B0 and frequency ω = 2π · 7.5 kHz. By averaging the resulting field
B over time and calculating and expanding the modulus, one can derive the form of
potential V created by the magnetic field. The value in the centre is now nonzero
which ensures the preservation of atoms.

B = (B′x+B0 cosωt,B′y +B0 sinωt,−2B′z) (42)

B̄ = B0 +
B′2

4B0

(x2 + y2 + 8z2)

V = gLµBmFB

Figure 6: Principal setup of the Cornell-Wieman-experiment [1]

This is a harmonic potential providing confinement for the condensate. Until this
point the experiment point is conducted in that way, that atoms from a Rubidium
source are collected in the MOT and cooled with laser cooling down to 20µK within
300 s. After that the atoms are pumped into the low-field seeking state F = 2, mF = 2
and the laser light is removed. Afterwards, the quadrupol and the transverse rotating
field is applied, whereas the quadrupol field has to be ramped slowly to its maximum
in order to prevent spin state transition. The temperature increased here to 90 K.
Up to this point, a density up to 210 cm−3 was achieved, but far too high for the
transition temperature of ∼ 170 nK [5]. The last step, the evaporative cooling, com-
prises another magnetic field irradiated as radio waves. Monochromatic waves ωrf
are tuned in that way that they induce a spin-flip of atoms with high energy. These
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2 Experimental Realization of BEC

atoms sample regions of high magnetic field which shifts the distance of Zeeman-
levels and consequently makes possible to select them spectroscopically from the the
low energy atoms. Once removed from the high energy part, the cloud rethermalizes
at a lower temperature and phase-space density increases. The radio frequency was
ramped down continually, starting from about 2π · 10 MHz [7] and ending at νevap.
This last frequency relates to the maximum energy an atom can have and is there-
fore linked with the final temperature. Consequently, if νevap is chosen small enough,
Bose-Einstein-condensation can take place.

2.3 Observation of BEC

For the observation, the field forming the trap was almost switched off and the cloud
was let to expand for 60 ms. After the cloud was exposed to a circularly polarized
laser pulse for 20µs, which is resonant with the 5S1/2(F = 2) → 5P3/2(F = 3)
transition, the absorption image was finally recorded. The intensity on the image is
related to the density of atoms at this point. Thus, the picture provides the coordinate-
space distribution which is equivalent to velocity distribution. Repeating the cooling
procedure and decreasing with each cycle νevap, the group observed the appearance of
a peak in the velocity distribution in the centre at νevap = 4.23 MHz which is related to
the macroscopic occupation of the ground state. Further decrease of νevap diminishes
the noncondensate fraction and makes the peak appear clearer and sharper (see the
picture). The sample parameters for observation such as T = 170 nK are taken shortly
before condensation at νevap = 4.25 Mhz. The number density gave 2.6 · 1012 cm−3.

Figure 7: velocity distribution for different values νevap, [1]

Considering the projection of the velocity distribution onto the image, the central
peak does not adopt an ideal circular shape, but elliptical shape. This fact results

18



3 Subsequent experiments

from an anisotropy in the confining potential. The dimension of the anisotropy is
additionally modified by the interaction of particles which were not taken into account
at any point in the derivations of the corresponding formulae.

3 Subsequent experiments

3.1 Observation of BEC in a gas of sodium atoms

In an experiment at the MIT, Cambridge, in September 1995 the condensation of
sodium atoms was observed. Scientists were able to utilize a new trap to obtain much
higher phase-space densities. The problem of zero field in the center of a spherical
quadrupol field, where atoms get lost, is here solved with a laser beam focused at the
centre. This laser is blue detuned to reduce heating due to scattering. Atoms are
now repelled from this region, called optical plug, because of the optical dipol force.
In the same way like the first experiment, the high energy atoms were removed using
rf-radiation which induces spin flip at the rim of the potential. Since the atoms are
transformed into untrapped states, which are attracted by high field, the potential
bends over in the view of these atoms. The whole potential is presented in figure (8)

Figure 8: confining potential for observation of BEC in sodium [8]

For imaging, a time-of-flight picture of the cloud was taken. First, a laser pumped
the atoms from the F = 1 to the F = 2-state. Later they changed to the F = 3-state
with a 100µs-laser pulse in y-direction. Its image was recorded onto charged-couple
device with a resolution of 8µm. Similarly to the experiment with Rubidium, under
a certain rf frequency νrf an elliptical core appeared. It consists of the ground state
atoms and lies within the spherical cloud of uncondensed atoms. The critical frequency
was 0.7 MHz and based on time-of-flight-images a temperature of 2.0± 0.5µK could
be estimated. Integration over the absorption image delivered the parameters of the
condensate at the transition point. The number reached 5 ·105 and the number density
4 · 1014 cm−3 [8].
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3.2 Observation of interference between two Bose
condensates

Until now, absorption technique was used to image the Bose condensates. The probe
light was almost completely absorbed and added to heating of the sample through recoil
energy. A new way of imaging is phase contrast imaging, well-known from microscopy.
In contrast to absorption, the probe light is detuned from resonant transition, e.g.
1.77 GHz. The photons are scattered in foward direction, being retarded in phase
compared to the unscattered light. In other words, the spatial distribution of the
refractive index divides the probe light into a surround (S) and defractive (D) fraction.
Through a λ

4
-phase plate in the objective rear focal plane, the S-wave is advanced by

π
2
phase angle or the D-wave is retarded by that amount. The image is formed by the

interference of these two waves providing good signal-to-noise ratio, since the probe
light with its negligible contribution to heating can be employed in a much higher
magnitude. Phase contrast imaging was used to take "real-time-movies" of collective
excitations of Bose gas. These were applied by periodically moving the center of the
trap, resulting in a dipole mode of the condensate, where the entire cloud is oscillating
along an axis in the trap. The frames of such a movie are separated by 10 msec.
Phase contrast imaging was brought into play when observing the formation of two
Bose condensates in a double well potential. The experimental setup was nearly the
same as for the BEC-experiment with sodium. The potential was made up by a similarly
overleaf magnetic trap, where the argon ion laser was focused in the center of the trap,
separating the two condensates. Their distance could be controlled by changing the
argon ion laser power between 7 and 43 mW. The observation was conducted in the
same way as described above. The trap and the argon laser were switched off and the
expanding cloud was pumped and probed by excitation into the F ′ = 3 state. The
probe beam was collinearly with the argon laser beam here.
The interference pattern can be seen in picture (9), which clearly comprises of fringes.
The two condensates were treated as point-like pulsed sources, where the fringe period
can be computed as follows [9]:

λ =
ht

md
(43)

d distance of the two sources
m mass of atoms
t time between switching of potential and observation

The time-of -flight was chosen in all pictures as 40 ms resulting in fringe spacings of
∼ 15µm. The experimental values of fringe spacing are in good consistency with
the theoretical prediction. To prove that the interference pattern is caused by the
interaction of two Bose condensates, only one part was illuminated and observed.
Hereby, the corresponding absorption image matched one side of the picture of a
double condensate, but does not cover or explain structures of the interference part in
the middle (figure 11). In conclusion, the experiment proved the matter-wave properties
of the ground-state and the spatial coherence leading to interference over an area as
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large as the condensate.

Figure 9: interference pattern of two Bose condensates for 3 and 5 mW power of
argon ion laser [9]

Figure 10: time of flight image of a single (dotted) and double condensate (solid)
[9]

3.3 Superradiant Rayleigh Scattering from a Bose-Einstein
Condensate

Interesting phenomena occur when coherent laser light interacts with the coherent
ground state of a Bose condensate. The following experimental and theoretical propo-
sitions are related to a paper of the Prichard and Ketterle group [10]. Basically, a
photon with momentum k0 is scattered by a atom in the ground state into the mo-
mentum state ki imparting a recoil momentum ~Kj = ~(k0−ki). This wave interferes
with the condensate and forms a grating, where following photons are diffracted, pro-
ducing further Kj-matter waves. The condensate is modulated with the amplitude
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Nmod = 2
√
NjN0, where Nj is the number of recoiled atoms and N0 the number in

the condensate. Since we have a connection between the total power of scattering
photons in the phase matching direction ki with the number Nmod,

P = ~ωfjR
N2
mod

4
(44)

we can derive quantum-mechanically the rate of scattered photons P/~ω and therefore
the change over time for Nj

Ṅj = RN0
sin θj

2

8π/3
Ωj(Nj + 1) (45)

Ωj =

∫
dΩ(k)

∣∣∣∣∫ ρ̃(r)ei(ki−k)·rdr

∣∣∣∣2
with : |k| = |ki| , ρ̃(r) spatial density distribution

The integral Ωj is a maximum when the light is emitted in the direction of the largest
extend of the condensate, the so called "end-fire mode". The experimental setup com-
prised a magnetic trap of several million sodium atoms (3S1/2, F = 1) condensed into
a cloud of 20µm diameter and 200µm length. The laser-light was red-detuned from
resonance with the transition to the states 3P3/2, F = 0, 1, 2. The laser power was set
to reach Rayleigh scattering rates of 4.5 · 101 − 4.5 · 103 s−1. After a pulse of up to
800µs duration and several ms time of flight, the scattered atoms were probed. The
result depended on the angle θj between polarisation of incident light and direction of
emission.
To examine the behaviour of the system under a square shaped laser pulse, a photomul-
tiplier was placed around the axial direction of the condensate to determine the rate of
scattered photons in this direction. The rise of intensity, which should follow equation
(46), was constant with increasing laser intensity for small intensity until it passed a
threshold and the inversed rise time began to increase; superradiance occurs. The
explanation for this is, that for Nj � 1 equation (46) becomes

∑
j Ṅj = RN0, normal

Rayleigh scattering at a constant rate. Once the Nj fraction becomes substantial, we
are in the superradiant regime. We can therefore rewrite the equation by adding a loss
term Lj to the gain Gj, taking into account the observation of a threshold.

Ṅj = (Gj − Lj)Nj (46)

The normal Rayleigh scattering rate R was measured by using parallel polarization
(θj = 0) to suppress the dominant anisotropic scattering in direction of the long
axis and integrating the emitted intensity over the whole space. The loss rate Lj
could be determined from the offset in the inverse rise time diagram, which yielded
1/Lj = 35µs. It can be interpreted as the decoherence time for matter wave inter-
ference. In conclusion, this experiment demonstrated that spontaneous emission in a
Rayleigh scattering process of a laser beam at a Bose condensate creates a matter-
wave grating through the recoiling atoms, where subsequent photons are coherently
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Figure 11: time-resolved evolution of scattered photon intensity and observation
of threshold for occurrence of superradiance (faster rise in intensity of
scattered light) [10]
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scattered. The matter wave grating induces therefore a stimulated emission of pho-
tons in certain direction and a production of atoms with a certain recoil, forming a
superradiant cloud.
As described above, the condensates has long-range coherence, but whether the same
applies for the superradiant cloud was yet to be shown. Another experiment at
the National Institute of Standards and Technology in Gaithersburg, MD (NIST)
examined this question. The experimental setup comprised 2 · 105 87Rb atoms in
a dc-magnetic trap, where the condensate adopts a highly elongated shape [11].
Along this axial direction the laser was applied, detuned with −2 GHz from the
5S1/2, F = 1→ 5P3/2F

′ = 2 transition. Likewise, the dominant emission mode is the
end-fire mode causing the photons to backscatter and to impart a momentum of 2~k.
This superradiance process as well as the one in the previous experiment has its origin
in a spontaneous emission and therefore a random phase. Thus, it can not be used in
amplifying already existing matter-waves, consequently in realising an atom laser, the
major aim of the scientists. For this, a seed-matter needed to be created, which will
be amplified later by the superradiant effect. This seed with a sharp momentum could
be obtained through Bragg diffraction demonstrated by the same research group in an
earlier paper [12]. Here, two counter-propagating laser beams, which are detuned from
the transition stated above, intersect at the position of the condensate (here Sodium
was used instead of Rubidium). The wavelength of the two laser deviate slightly from
each other, so that they form a moving standing wave, where the condensate can be
scattered. nth order Bragg diffraction in this case can be seen as stimulated 2n-Raman
process, where a photon of one beam is absorbed and then stimulated emitted into
the other beam, while in this process a momentum Precoil is imparted, adding up to a
final momentum n · Precoil of the atom. Conservation of energy gives a condition for
the detuning δn of the two lasers.

(nPrecoil)
2

2M
= n~δn (47)

Precoil = 2~k sin θ/2 recoil momentum

Figure 12: laser beams and condensate in a setup to coherently split the condensate
[12]

In case of the setup for producing the Rubidium matter-wave seed, the lasers (Bragg
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beams) were counter-propagating (θ = 180◦) making a frequency shift of ∆ω = 15 kHz
necessary for first-order (n = 1) Bragg diffraction. Under irradiation of the two lasers
the momentum space wavefunction will oscillate between the two levels |g〉 = |p = 0〉
and |e〉 = |p = 2~k〉, where under adjusting intensity and pulse duration a arbitrary
amount can be transferred into the excited momentum state. In this basically two level
system a π/2 (π) pulse excites half (all) atoms of the condensate. In detail:

π/2-pulse

|g〉 → 1√
2

(|g〉 − e−iϕ|e〉)

|e〉 → 1√
2

(eiϕ|g〉+ |e〉)

π-pulse

|g〉 → e−iϕ|e〉
|e〉 → eiϕ|g〉

with ϕ being the phase of the moving standing wave in the centre of the condensate
and in the middle of the pulse [13]. For example, a pulse duration of 15µs
transferred 6.5 % of the atoms into the |2~k〉 state. The experiment proceeds by
extinguishing the magnetic trap and applying the Bragg pulses for this time period.
Afterwards, the superradiance pulse A amplifies the seed wave whereas the
population of this |2~k〉 state is controlled by the duration of the pulse.

Figure 13: arrangement of condensate and superradiance (pulse A) and Bragg
(pulses B, C) laser beams [11]

To prove that the phase of the superradiant cloud is locked to the one of the seed
matter wave, the experimenters realized something like a Mach Zehnder
Interferometer by setting the population of the moving and resting cloud each 50 %
(state: 1√

2
(|g〉 − |e〉)), then applying a second Bragg π-pulse after the clouds were

well separated. A π-pulse acts like a mirror and switches the momenta of the clouds
which therefore converge (state:- 1√

2
(|g〉+ |e〉)) . In the moment of complete

overlapping a final π/2-Bragg pulse like the first one illuminated the matter except
that the phase of the moving standing wave is altered by φ.
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Figure 14: Realisation of a Mach-Zehnder-Interferometer with two condensate
clouds by a sequence of Bragg pulses (red) and a superradiant pulse
(blue)
the clouds are moving after release from the trap due to gravitation [11]

Figure 15: Interferogram showing population of |2~k〉 state in dependence of phase
deviation ϕ [11]
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If no phase change is applied, all atoms will be in the original |g〉 state. If φ 6= 0 the
final state gives − 1√

2
((1 + eiφ)|g〉+ (1− e−iφ)|e〉). Thus, the probability of finding

atoms in the |e〉 = |2~k〉 state would be 1/2 · (1− cosφ). An experiment, where the
population is measured in dependence from φ, provides indeed interferometer fringes
depicted in (15). Therefore, the superradiant wave phase is locked to the seed wave.
Consequently, all properties of a laser regarding amplification, spectral line width, and
at least long range coherence has been shown giving rise to the development of the a
first atom laser and to the examination of its features.

Conclusion/Summary

The here stated steps in development of the atom laser consider only roughly the
fundamentals and not the technical implementation and application of an atom laser
such as interferometry and holography. Here, waves have a much smaller
de-Broglie-wavelength which improves the image resolution. Nonetheless, the starting
point for the endeavour of creating a Bose-Condensate was still the confirmation of a
seventy year old prediction which was published early in the development of quantum
theory. This assumption was derived from the Maxwell-Boltzmann distribution, and
along with Fermi-Dirac-distribution it formed the base of many models especially in
solid state physics. A proof of its validity and consistency was crucial, but realisation
seemed to be a major obstacle due to the necessary ultra low-temperatures. A first
step in approaching this goal was the invention of a Laser and the subsequent
technique of laser-cooling. Since this was not sufficient enough, the technique of
magnetic trapping was refined and many suggestion how to magnetically trap atoms
had been published. After the solving the problem of too great losses in the trap, the
last step of evaporativly cooling the matter followed immediately. The observation of
BEC, however, apparently facilitated the efforts on BEC in the first place which can
be seen from the slope in the number of papers published on that topic. Next was
the successful observation in Sodium, Lithium, Hydrogen and so on, beside Rubidium
in the first experiment. Shortly after that, scientists also examined the coherent
properties of the ground state with the observation of interference between two Bose
condensates. The coherent amplification of a seed wave matter through a Bose
condensate, by means of an analogous technique to stimulated emission in optics,
was realized shortly afterwards. It could be shown that the amplificated cloud
exhibits coherence as well, making a condensate in the ground state a promising
reservoir for further research on the realisation of a practicable the atom laser.
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